Dry Weight (Biomass) References
Pinus sylvestris L. [Scots Pine]
Alberton, O. and Kuyper, T.W. 2009. Ectomycorrhizal fungi associated with Pinus sylvestris seedlings respond differently to increased carbon and nitrogen availability: implications for ecosystem responses to global change. Global Change Biology 15: 166-175.
Alberton, O., Kuyper, T.W. and Gorissen, A. 2007. Competition for nitrogen between Pinus sylvestris and ectomycorrhizal fungi generates potential for negative feedback under elevated CO2. Plant and Soil 296: 159-172.
Alberton, O., Kuyper, T.W. and Summerbell, R.C. 2010. Dark septate root endophytic fungi increase growth of Scots pine seedlings under elevated CO2 through enhanced nitrogen use efficiency. Plant and Soil 328: 459-470.
Broadmeadow, M.S.J. and Jackson, S.B. 2000. Growth responses of Quercus petraea, Fraxinus excelsior and Pinus sylvestris to elevated carbon dioxide, ozone and water supply. New Phytologist 146: 437-451.
Crookshanks, M., Taylor, G. and Broadmeadow, M. 1998. Elevated CO2 and tree root growth: contrasting responses in Fraxinus excelsior, Quercus petraea and Pinus sylvestris. New Phytologist 138: 241-250.
Fransson, P.M.A. and Johansson, E.M. 2010. Elevated CO2 and nitrogen influence exudation of soluble organic compounds by ectomycorrhizal root systems. FEMS Microbial Ecology 71: 186-196.
Fransson, P.M.A., Taylor, A.F.S. and Finlay, R.D. 2005. Mycelial production, spread and root colonization by the ectomycorrhizal fungi Hebeloma crustuliniforme and Paxillus involutus under elevated atmospheric CO2. Mycorrhiza 15: 25-31.
Gorissen, A. and Kuyper, Th.W. 2000. Fungal species-specific responses of ectomycorrhizal Scots pine (Pinus sylvestris) to elevated [CO2]. New Phytologist 146: 163-168.
Heath, J., Ayres, E., Possell, M., Bardgett, R.D., Black, H.I.J., Grant, H., Ineson, P. and Kerstiens, G. 2005. Rising atmospheric CO2 reduces sequestration of root-derived soil carbon. Science 309: 1711-1713.
Heyworth, C.J., Iason, G.R., Temperton, V., Jarvis, P.G. and Duncan, A.J. 1998. The effect of elevated CO2 concentration and nutrient supply on carbon-based plant secondary metabolites in Pinus sylvestris L. Oecologia 115: 344-350.
Ineichen, K., Wiemken, V. and Wiemken, A. 1995. Shoots, roots and ectomycorrhiza formation of pine seedlings at elevated atmospheric carbon dioxide. Plant, Cell and Environment 18: 703-707.
Jach, M.E., Laureysens, I. and Ceulemans, R. 2000. Above- and below-ground production of young Scots Pine (Pinus sylvestris L.) trees after three years of growth in the field under elevated CO2. Annals of Botany 85: 789-798.
Janssens, I.A., Crookshanks, M., Taylor, G. and Ceulemans, R. 1998. Elevated atmospheric CO2 increases fine root production, respiration, rhizosphere respiration and soil CO2 efflux in Scots pine seedlings. Global Change Biology 4: 871-878.
Janssens, I.A., Medlyn, B., Gielen, B., Laureysens, I., Jach, M.E., van Hove, D. and Ceulemans, R. 2005. Carbon budget of Pinus sylvestris saplings after four years of exposure to elevated atmospheric carbon dioxide concentration. Tree Physiology 25: 325-337.
Johansson, E.M., Fransson, P.M.A., Finlay, R.D. and van Hees, P.A.W. 2009. Quantitative analysis of soluble exudates produced by ectomycorrhizal roots as a response to ambient and elevated CO2. Soil Biology & Biochemistry 41: 1111-1116.
Kilpelainen A., Peltola, H., Ryyppo, A., Sauvala, K., Laitinen, K. and Kellomaki, S. 2003. Wood properties of Scots pines (Pinus sylvestris) grown at elevated temperature and carbon dioxide concentration. Tree Physiology 23: 889-897.
Kilpelainen, A., Peltola, H., Ryyppo, A. and Kellomaki, S. 2005. Scots pine responses to elevated temperature and carbon dioxide concentration: growth and wood properties. Tree Physiology 25: 75-83.
Markkola, A.M., Ohtonen, A., Ahonen-Jonnarth, U. and Ohtonen, R. 1996. Scots pine responses to CO2 enrichment - I. Ectomycorrhizal fungi and soil fauna. Environmental Pollution 94: 309-316.
Overdieck, D. and Fenselau, K. 2009. Elevated CO2 concentration and temperature effects on the partitioning of chemical components along juvenile Scots pine stems (Pinus sylvestris L.). Trees 23: 771-786.
Raisanen, T., Ryyppo, A. and Kellomaki, S. 2008. Effects of elevated CO2 and temperature on monoterpene emission of Scots pine (Pinus sylvestris L.). Atmospheric Environment 42: 4160-4171.
Rouhier, H. and Reed, D.J. 1998. Plant and fungal responses to elevated atmospheric carbon dioxide in mycorrhizal seedlings of Pinus sylvestris. Environmental and Experimental Botany 40: 237-246.
Utriainen, J., Janhunen, S., Helmisaari, H.-S. and Holopainen, T. 2000. Biomass allocation, needle structural characteristics and nutrient composition in Scots pine seedlings exposed to elevated CO2 and O3 concentrations. Trees 14: 475-484.
Volanen, V., Peltola, H., Rouvinen, I. and Kellomaki, S. 2006. Impacts of long-term elevation of atmospheric carbon dioxide concentration and temperature on the establishment, growth and mortality of boreal Scots pine branches. Scandinavian Journal of Forest Research 21: 115-123.
Ziche, D. and Overdieck, D. 2004. CO2 and temperature effects on growth, biomass production, and stem wood anatomy of juvenile Scots pine (Pinus sylvestris L.). Journal of Applied Botany 78: 120-132.