Dry Weight (Biomass) References
Hordeum vulagare L. [Barley]

Clausen, S.K., Frenck, G., Linden, L.G., Mikkelsen, T.N., Lunde, C. and Jorgensen, R.B. 2011. Effects of single and multifactor treatments with elevated temperature, CO2 and ozone on oilseed rape and barley. Journal of Agronomy and Crop Science 197: 442-453.

Cordoba, J., Perez, P., Morcuende, R., Molina-Cano, J.-L. and Martinez-Carrasco, R. 2017. Acclimation to elevated CO2 is improved by low Rubisco and carbohydrate content, and enhanced Rubisco transcripts in the G132 barley mutant. Environmental and Experimental Botany 137: 36-48.

Fangmeier, A., Chrost, B., Hogy, P. and Krupinska, K. 2000. CO2 enrichment enhances flag leaf senescence in barley due to greater grain nitrogen sink capacity. Environmental and Experimental Botany 44: 151-164.

Haase, S., Rothe, A., Kania, A., Wasaki, J., Romheld, V., Engels, C., Kandeler, E. and Neumann, G. 2008. Responses to iron limitation in Hordeum vulgare L. as affected by the atmospheric CO2 concentration. Journal of Environmental Quality 37: 1254-1262.

Hibberd, J.M., Whitbread, R. and Farrar, J.F. 1996. Effect of 700 µmol mol-1 CO2 and infection with powdery mildew on the growth and carbon partitioning of barley. New Phytologist 134: 309-315.

Ingvardsen, C. and Veierskov, B. 1994. Response of young barley plants to CO2 enrichment. Journal of Experimental Botany 45: 1373-1378.

Ingvordsen, C.H., Lyngkjaer, M.F., Peltonen-Sainio, P., Mikkelsen, T.N., Stockmarr, A. and Jorgensen, R.B. 2018. How a 10-day heatwave impacts barley grain yield when superimposed onto future levels of temperature and CO2 as single and combined factors. Agriculture, Ecosystems and Environment 259: 45-52.

Juknys, R., Duchovskis, P., Sliesaravicius, A., Slepetys, J., Januskaitiene, I., Brazaityte, A., Ramaskeviciene, A., Lazauskas, S., Dedeliene, K., Sakalauskaite, J., Juozaityte, R., Kadziuliene, Z. and Diksaityte, A. 2011. Response of different agricultural plants to elevated CO2 and air temperature. Zemdirbyste=Agriculture 98: 259-266.

Kaciene, G., Kiksaityte, A., Januskaitiene, I., Miskelyte, D., Zaltauskaite, J., Sujetoviene, G., Sakalauskiene, S., Miliauskiene, Juozapaitiene, G. and Juknys, R. 2017. Different crop and weed performance under single and combined effects of elevated CO2 and temperature. Crop Science 57: 935-944.

Lam, S.K., Chen, D., Norton, R. and Armstrong, R. 2013. The effect of elevated atmospheric carbon dioxide concentration on the contribution of residual legume and fertilizer nitrogen to a subsequent wheat crop. Plant and Soil 364: 81-91.

Manderscheid, R., Pacholski, A., Fruhauf, C. and Weigel, H.-J. 2009. Effects of free air carbon dioxide enrichment and nitrogen supply on growth and yield of winter barley cultivated in a crop rotation. Field Crops Research 110: 185-196.

Mishra, S., Heckathorn, S.A. and Frantz, J.M. 2012. Elevated CO2 affects plant responses to variation in boron availability. Plant and Soil 350: 117-130.

Mitterbauer, E., Enders, M., Bender, J., Erbs, M., Habekuß, A., Kilian, B., Ordon, F. and Weigel, H.-J. 2017. Growth response of 98 barley (Hordeum vulgare L.) genotypes to elevated CO2 and identification of related quantitative trait loci using genome-wide association studies. Plant Breeding 136: 483-497.

Morison, J.I.L. and Gifford, R.M. 1984. Plant growth and water use with limited water supply in high CO2 concentrations. II. Plant dry weight, partitioning and water use efficiency. Australian Journal of Plant Physiology 11: 375-384.

Perez-Lopez, U., Miranda-Apodaca, J., Mena-Petite, A. and Muñoz-Rueda, A. 2013b. Barley growth and its underlying components are affected by elevated CO2 and salt concentration. Journal of Plant Growth Regulators 32: 732-744.

Perez-Lopez, U., Mena-Petite, A. and Muñoz-Rueda, A. 2014. Will carbon isotope discrimination be useful as a tool for analyzing the functional response of barley plants to salinity under the future atmospheric CO2 conditions. Plant Science 226: 71-81.

Perez-Lopez, U., Robredo, A., Lacuesta, M., Mena-Petite, A. and Munoz-Rueda, A. 2012. Elevated CO2 reduces stomatal and metabolic limitations on photosynthesis caused by salinity in Hordeum vulgare. Photosynthesis Research 111: 269-283.

Perez-Lopez, U., Robredo, A., Miranda-Apodaca, J., Lacuesta, M., Munoz-Rueda, A. and Mena-Petite, A. 2013a. Carbon dioxide enrichment moderates salinity-induced effects on nitrogen acquisition and assimilation and their impact on growth in barley plants. Environmental and Experimental Botany 87: 148-158.

Plessl, M., Heller, W., Payer, H.-D., Elstner, E.F., Habermeyer, J. and Heiser, I. 2005. Growth parameters and resistance against Drechslera teres of spring barley (Hordeum vulgare L. cv. Scarlett) grown at elevated ozone and carbon dioxide concentrations. Plant Biology 7: 694-705.

Saebo, A. and Mortensen, L.M. 1996. Growth, morphology and yield of wheat, barley and oats grown at elevated atmospheric CO2 concentration in a cool, maritime climate. Agriculture, Ecosystems and Environment 57: 9-15.

Schmid, I., Franzaring, J., Müller, M., Brohon, N., Calvo, O.C., Högy, P. and Fangmeier, A. 2016. Effects of CO2 enrichment and drought on photosynthesis, growth and yield of an old and a modern barley cultivar. Journal of Agronomy and Crop Science 202: 81-95.

Sicher, R.C. 2005. Interactive effects of inorganic phosphate nutrition and carbon dioxide enrichment on assimilate partitioning in barley roots. Physiologia Plantarum 123: 219-226.

Sicher, R.C. and Bunce, J.A. 2008. Growth, photosynthesis, nitrogen partitioning and responses to CO2 enrichment in a barley mutant lacking NADH-dependent nitrate reductase activity. Physiologia Plantarum 134: 31-40.

Szoboszlay, M., Näther, A., Mitterbauer, E., Bender, J., Weigel, H.-J. and Tebbe, C.C. 2017. Response of the rhizosphere prokaryotic community of barley (Hordeum vulgare L.) to elevated atmospheric CO2 concentration in open-top chambers. MicrobiologyOpen 6: e462.

Veisz, O., Bencze, S., Balla, K., Vida, G. and Bedo, Z. 2008. Change in water stress resistance of cereals due to atmospheric CO2 enrichment. Cereal Research Communications 36: 10.1556/CRC.36.2008.Suppl.1.

Wang, L, Pedas, P., Eriksson, D. and Schjoerring, J.K. 2013. Elevated atmospheric CO2 decreases the ammonia compensation point of barley plants. Journal of Experimental Botany 64: 2713-2724.

Weigel, H.J. and Manderscheid, R. 2005. CO2 enrichment effects on forage and grain nitrogen content of pasture and cereal plants. Journal of Crop Improvement 13: 73-89.

Weigel, H.J., Pacholski, A., Burkart, S., Helal, M., Heinemeyer, O., Kleikamp, B., Mandershceid, R., Fruhauf, C., Hendrey, G.F., Lewin, K. and Nagy, J. 2005. Carbon turnover in a crop rotation under free air CO2 enrichment (FACE). Pedosphere 15: 728-738.

Printer Friendly Version