Dry Weight (Biomass) References
Brassica napus L. [Oilseed Rape]


Clausen, S.K., Frenck, G., Linden, L.G., Mikkelsen, T.N., Lunde, C. and Jorgensen, R.B. 2011. Effects of single and multifactor treatments with elevated temperature, CO2 and ozone on oilseed rape and barley. Journal of Agronomy and Crop Science 197: 442-453.

Dahal, K., Gadapati, W., Savitch, L.V., Singh, J. and Huner, N.P.A. 2012. Cold acclimation and BnCBF17-over-expression enhance photosynthetic performance and energy conversion efficiency during long-term growth of Brassica napus under elevated CO2 conditions. Planta 236: 1639-1652.

Franzaring, J., Hogy, P. and Fangmeier, A. 2008. Effects of free-air CO2 enrichment on the growth of summer oilseed rape (Brassica napus cv. Campino). Agriculture, Ecosystems and Environment 128: 127-134.

Franzaring, J., Weller, S., Schmid, I. and Fangmeier, A. 2011. Growth, senescence and water use efficiency of spring oilseed rape (Brassica napus L. cv. Mozart) grown in a factorial combination of nitrogen supply and elevated CO2. Environmental and Experimental Botany 72: 284-296.

Frenck, G., van der Linden, L., Mikkelsen, T.N., Brix, H. and Jorgensen, R.B. 2011. Increased [CO2] does not compensate for negative effects on yield caused by higher temperature and [O3] in Brassica napus L. European Journal of Agronomy 35: 127-134.

Himanen, S.J., Nerg, A.-M., Nissinen, A., Pinto, D.M., Stewart Jr., C.N., Poppy, G.M. and Holopainen, J.K. 2009. Effects of elevated carbon dioxide and ozone on volatile terpenoid emissions and multitrophic communication of transgenic insecticidal oilseed rape (Brassica napus). New Phytologist 181: 174-186.

Himanen, S.J., Nissinen, A., Auriola, S., Poppy, G.M., Stewart Jr., C.N., Holopainen, J.K. and Nerg, A.-M. 2008a. Constitutive and herbivore-inducible glucosinolate concentrations in oilseed rape (Brassica napus) leaves are not affected by Bt Cry 1 Ac insertion but change under elevated atmospheric CO2 and O3. Planta 227: 427-437.

Himanen, S.J., Nissinen, A., Dong, W.-X., Nerg, A.-M., Stewart Jr., C.N., Poppy, G.M. and Holopainen, J.K. 2008b. Interactions of elevated carbon dioxide and temperature with aphid feeding on transgenic oilseed rape: Are Bacillus thuringiensis (Bt) plants more susceptible to nontarget herbivores in future climate? Global Change Biology 14: 1437-1454.

Hogy, P., Franzaring, J., Schwadorf, K., Breuer, J., Schutze, W. and Fangmeier, A. 2010. Effects of free-air CO2 enrichment on energy traits and seed quality of oilseed rape. Agriculture, Ecosystems and Environment 139: 239-244.

Juozapaitiene, G., Diksaityte, A., Sujetoviene, G., Aleinikoviene, J. and Juknys, R. 2019. Aboveground and below-ground carbon allocation of summer rape under elevated CO2 and air temperature. Agricultural and Food Science 28: 1-8.

Morison, J.I.L. and Gifford, R.M. 1984. Plant growth and water use with limited water supply in high CO2 concentrations. II. Plant dry weight, partitioning and water use efficiency. Australian Journal of Plant Physiology 11: 375-384.

Qaderi, M.M. and Reid, D.M. 2005. Growth and physiological responses of canola (Brassica napus) to UV-B and CO2 under controlled environment conditions. Physiologia Plantarum 125: 247-259.

Qaderi, M.M., Kurepin, L.V. and Reid, D.M. 2006. Growth and physiological responses of canola (Brassica napus) to three components of global climate change: temperature, carbon dioxide and drought. Physiologia Plantarum 128: 710-721.

Reekie, E.G., MacDougall, G., Wong, I. and Hicklenton, P.R. 1998. Effect of sink size on growth response to elevated atmospheric CO2 within the genus Brassica. Canadian Journal of Botany 76: 829-835.

Tohidimoghadam, H.R., Ghooshchi, F. and Zahedi, H. 2011. Effect of UV radiation and elevated CO2 on morphological traits, yield and yield components of canola (Brassica napus L.) grown under water deficit. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 39: 213-219.

Uddin, S., Löw, M., Parvin, S., Fitzgerald, G.J., Tausz-Posch, S., Armstrong, R. and Tausz, M. 2018. Yield of canola (Brassica napus L.) benefits more from elevated CO2 when access to deeper soil water is improved. Environmental and Experimental Botany 155: 518-528.


Printer Friendly Version