Dry Weight (Biomass) References
Betula papyrifera Marsh. [Paper Birch]


Ambebe, T.F. and Dang, Q.-L. 2010. Low moisture availability reduces the positive effect of increased soil temperature on biomass production of white birch (Betula papyrifera) seedlings in ambient and elevated carbon dioxide concentration. Nordic Journal of Botany 28: 104-111.

Bazzaz, F., Coleman, J., Morse, S. 1990. Growth responses of seven major co-occuring tree species of the northeastern United States to elevated CO2. Canadian Journal of Forest Research 20: 1479-1484.

Berntson, G.M. and Bazzaz, F.A. 1996. The allometry of root production and loss in seedlings of Acer rubrum (Aceraceae) and Betula papyrifera (Betulaceae): Implications for root dynamics in elevated CO2. American Journal of Botany 83: 608-616.

Cao, B., Dang, Q.-L., Yu, X. and Zhang, S. 2008. Effects of [CO2] and nitrogen on morphological and biomass traits of white birch (Betula papyrifera) seedlings. Forest Ecology and Management 254: 217-224.

Catovsky, S. and Bazzaz F.A. Elevated CO2 influences the responses of two birch species to soil moisture: implications for forest communitey structure. Global Change Biology 5: 507-518.

Darbah, J.N.T., Kubiske, M.E., Nelson, N., Oksanen, E., Vaapavuori, E. and Karnosky, D.F. 2007. Impacts of elevated atmospheric CO2 and O3 on paper Birch (Betula papyrifera): Reproductive fitness. The Scientific World JOURNAL 7(S1): 240-246.

Darbah, J.N.T., Kubiske, M.E., Nelson, N., Oksanen, E., Vapaavuori, E. and Karnosky, D.F. 2008. Effects of decadal exposure to interacting elevated CO2 and/or O3 on paper birch (Betula papyrifera) reproduction. Environmental Pollution 155: 446-452.

Godbold, D.L., Berntson, G.M. and Bazzaz, F.A. 1997. Growth and mycorrhizal colonization of three North American tree species under elevated atmospheric CO2. New Phytologist 137: 433-440.

Mattson, W.J., Kuokkanen, K., Niemela, P., Julkunen-Tiitto, R., Kellomaki, S. and Tahvanainen, J. 2004. Elevated CO2 alters birch resistance to Lagomorpha herbivores. Global Change Biology 10: 1402-1413.

Mattson, W.J., Julkunen-Titto, R. and Herms, D.A. 2005. CO2 enrichment and carbon partitioning to phenolics: do plant responses accord better with the protein competition or the growth-differentiation balance models? Oikos 111: 337-347.

Parsons, W.F.J., Kopper, B.J. and Lindroth, R.L. 2003. Altered growth and fine root chemistry of Betula papyrifera and Acer saccharum under elevated CO2. Canadian Journal of Forest Research 33: 842-846.

Tjoelker, M.G., Oleksyn, J. and Reich, P.B. 1998. Temperature and ontogeny mediate growth response to elevated CO2 in seedlings of five boreal tree species. New Phytologist 140: 197-210.

Zhang, S. and Dang, Q.-L. 2007. Interactive effects of soil temperature and [CO2] on morphological and biomass traits in seedlings of four boreal tree species. Forest Science 53: 453-460.

Zhang, S., Dang, Q.-L. and Cao, B. 2013. Nutrient supply has greater influence than sink strength on photosynthetic adaptation to CO2 elevation in white birch seedlings. Plant Science 203-204: 55-62.

Zhang, S., Dang, Q.-L. and Yu, X. 2006. Nutrient and [CO2] elevation had synergistic effects on biomass production but not on biomass allocation of white birch seedlings. Forest Ecology and Management 234: 238-244.


Printer Friendly Version