Dry Weight (Biomass) References
Arabidopsis thaliana [Thale Cress]


Boyes, D.C., Zayed, A.M., Ascenzi, R., McCaskill, A.J., Hoffman, N.E., Davis, K.R. and Gorlach, J. 2001. Growth stage-based phenotypic analysis of Arabidopsis: a model for high throughput functional genomics in plants. Plant Cell 13: 1499-1510.

Dhami, N., Tissue, D.T. and Cazzonelli, C.I. 2018. Leaf-age dependent response of carotenoid accumulation to elevated CO2 in Arabidopsis. Archives of Biochemistry and Biophysics 647: 67-75.

Ekman, A., Bulow, L. and Stymne, S. 2007. Elevated atmospheric CO2 concentration and diurnal cycle induce changes in lipid composition in Arabidopsis thaliana. New Phytologist 174: 591-599.

Fernandez, V., Barnaby, J.Y., Tomecek, M., Codling, E.E. and Ziska, L.H. 2018. Elevated CO2 may reduce arsenic accumulation in diverse ecotypes of Arabidopsis thaliana. Journal of Plant Nutrition 41: 645-653.

Gibeaut, D.M., Cramer, G.R. and Seemann, J.R. 2001. Growth, cell walls, and UDP-glucose dehydrogenase activity of Arabidopsis thaliana grown in elevated carbon dioxide. Journal of Plant Physiology 158: 569-576.

Jauregui, I, Aparicio-Tejoa, P.M., Avila, C., Rueda-López, M. and Aranjuelo, A. 2015. Root and shoot performance of Arabidopsis thaliana exposed to elevated CO2: A physiologic, metabolic and transcriptomic response. Journal of Plant Physiology 189: 65-76.

Jauregui, I., Aparicio-Tejo, P.M., Baroja, E., Avila, C. and Aranjuelo, I. 2017. Elevated CO2 improved the growth of a double nitrate reductase defective mutant of Arabidopsis thaliana: The importance of maintaining a high energy status. Environmental and Experimental Botany 140: 110-119.

Lau, J.A., Shaw, R.G., Reich, P.B., Shaw, F.H. and Tiffin, P. 2007. Strong ecological but weak evolutionary effects of elevated CO2 on a recombinant inbred population of Arabidopsis thaliana. New Phytologist 175: 351-362.

Lau, J.A., Shaw, R.G., Reich, P.B. and Tiffin, P. 2010. Species interactions in a changing environment: elevated CO2 alters the ecological and potential evolutionary consequences of competition. Evolutionary Ecology Research 12: 435-455.

Lau, J.A. and Tiffin, P. 2009. Elevated carbon dioxide concentrations indirectly affect plant fitness by altering plant tolerance to herbivory. Oecologia 161: 401-410.

Takatani, N., Ito, T., Kiba, T., Mori, M., Miyamoto, T., Maeda, S.-i. and Omata, T. 2014. Effects of high CO2 on growth and metabolism of Arabidopsis seedlings during growth with a constantly limited supply of nitrogen. Plant & Cell Physiology 55: 281-292.

Teng, N., Jin, B., Wang, Q., Hao, H., Ceulemans, R., Kuang, T. and Lin, J. 2009. No detectable maternal effects of elevated CO2 on Arabidopsis thaliana over 15 generations. PLoS ONE 4: 10.1371/journal.pone.0006035.

Teng, N., Wang, J., Chen, T., Wu, X., Wang, Y. and Lin, J. 2006. Elevated CO2 induces physiological, biochemical and structural changes in leaves of Arabidopsis thaliana. New Phytologist 172: 92-103.

Tocquin, P., Ormenese, S., Pieltain, A., Detry, N., Bernier, G. and Perilleux, C. 2006. Acclimation of Arabidopsis thaliana to long-term CO2 enrichment and nitrogen supply is basically a matter of growth rate adjustment. Physiologia Plantarum 128: 677-688.


Printer Friendly Version