How does rising atmospheric CO2 affect marine organisms?

Click to locate material archived on our website by topic


Climatic Implications of Antarctic Ice-Core Sulfate Profiles of the Past Millennium
Reference
Castellano, E., Becagli, S., Hansson, M., Hutterli, M., Petit, J.R., Rampino, M.R., Severi, M., Steffensen, J.P., Traversi, R. and Udisti, R. 2005. Holocene volcanic history as recorded in the sulfate stratigraphy of the European Project for Ice Coring in Antarctica Dome C (EDC96) ice core. Journal of Geophysical Research 110: 10.1029/JD005259.

What was done
The authors derived a detailed history of Holocene volcanism from the sulfate record of the first 360 meters of the Dome Concordia ice core that covered the period 0-11.5 kyr BP, after which they compared their results for the past millennium with similar results obtained from eight other Antarctic ice cores. Before doing so, however, they normalized the results at each site by dividing its several volcanic-induced sulfate deposition values by the value produced at that site by the AD 1816 Tambora eruption, in order to reduce deposition differences among sites that might have been induced by differences in local site characteristics.

What was learned
It was found that most volcanic events in the early last millennium (AD 1000-1500) exhibited greater among-site variability in normalized sulphate deposition than was observed thereafter.

What it means
Citing Budner and Cole-Dai (2003) in noting that "the Antarctic polar vortex is involved in the distribution of stratospheric volcanic aerosols over the continent," Castellano et al. say that assuming the intensity and persistence of the polar vortex in both the troposphere and stratosphere "affect the penetration of air masses to inland Antarctica, isolating the continental area during cold periods and facilitating the advection of peripheral air masses during warm periods (Krinner and Genthon, 1998), we support the hypothesis that the pattern of volcanic deposition intensity and geographical variability [higher values at coastal sites] could reflect a warmer climate of Antarctica in the early last millennium," and that "the re-establishment of colder conditions, starting in about AD 1500, reduced the variability of volcanic depositions."

Describing this phenomenon in terms of what it implies, Castellano et al. say "this warm/cold step could be like a Medieval Climate Optimum-like to Little Ice Age-like transition." We agree, noting they additionally cite Goosse et al. (2004) as reporting evidence from Antarctic ice-core δD and δ18O data "in support of a Medieval Warming-like period in the Southern Hemisphere, delayed by about 150 years with respect to Northern Hemisphere Medieval Warming." Hence, the ten researchers conclude by postulating that "changes in the extent and intra-Antarctic variability of volcanic depositional fluxes may have been consequences of the establishment of a Medieval Warming-like period that lasted until about AD 1500."

References
Budner, D. and Cole-Dai, J. 2003. The number and magnitude of large explosive volcanic eruptions between 904 and 1865 A.D.: Quantitative evidence from a new South Pole ice core. In: Robock, A. and Oppenheimer, C. (Eds.), Volcanism and the Earth's Atmosphere, Geophysics Monograph Series 139: 165-176.

Goosse, H., Masson-Delmotte, V., Renssen, H., Delmotte, M., Fichefet, T., Morgan, V., van Ommen, T., Khim, B.K. and Stenni, B. 2004. A late medieval warm period in the Southern Ocean as a delayed response to external forcing. Geophysical Research Letters 31: 10.1029/2003GL019140.

Krinner, G. and Genthon, C. 1998. GCM simulations of the Last Glacial Maximum surface climate of Greenland and Antarctica. Climate Dynamics 14: 741-758.

Reviewed 1 March 2006