How does rising atmospheric CO2 affect marine organisms?

Click to locate material archived on our website by topic


Surviving the Unprecedented Climate Change of the IPCC
Volume 14, Number 10: 9 March 2011

In a paper published in Systematics and Biodiversity, Willis et al. (2010) consider the IPCC (2007) "predicted climatic changes for the next century" -- i.e., their contentions that "global temperatures will increase by 2-4°C and possibly beyond, sea levels will rise (~1 m 0.5 m), and atmospheric CO2 will increase by up to 1000 ppm" -- noting that it is "widely suggested that the magnitude and rate of these changes will result in many plants and animals going extinct," citing studies that suggest that "within the next century, over 35% of some biota will have gone extinct (Thomas et al., 2004; Solomon et al., 2007) and there will be extensive die-back of the tropical rainforest due to climate change (e.g. Huntingford et al., 2008)."

On the other hand, they indicate that some biologists and climatologists have pointed out that "many of the predicted increases in climate have happened before, in terms of both magnitude and rate of change (e.g. Royer, 2008; Zachos et al., 2008), and yet biotic communities have remained remarkably resilient (Mayle and Power, 2008) and in some cases thrived (Svenning and Condit, 2008)." But they report that those who mention these things are often "placed in the 'climate-change denier' category," although the purpose for pointing out these facts is simply to present "a sound scientific basis for understanding biotic responses to the magnitudes and rates of climate change predicted for the future through using the vast data resource that we can exploit in fossil records."

Going on to do just that, Willis et al. focus on "intervals in time in the fossil record when atmospheric CO2 concentrations increased up to 1200 ppm, temperatures in mid- to high-latitudes increased by greater than 4°C within 60 years, and sea levels rose by up to 3 m higher than present," describing studies of past biotic responses that indicate "the scale and impact of the magnitude and rate of such climate changes on biodiversity." And what emerges from those studies, as they describe it, "is evidence for rapid community turnover, migrations, development of novel ecosystems and thresholds from one stable ecosystem state to another." And, most importantly in this regard, they report "there is very little evidence for broad-scale extinctions due to a warming world."

In concluding, the Norwegian, Swedish and UK researchers say that "based on such evidence we urge some caution in assuming broad-scale extinctions of species will occur due solely to climate changes of the magnitude and rate predicted for the next century," reiterating that "the fossil record indicates remarkable biotic resilience to wide amplitude fluctuations in climate."

Sherwood, Keith and Craig Idso

References
Huntingford, C., Fisher, R.A., Mercado, L., Booth, B.B.B., Stich, S., Harris, P.P., Cox, P.M., Jones, C.D., Betts, R.A., Malhi, Y., Harris, G.R., Collins, M. and Moorcroft, P. 2008. Towards quantifying uncertainty in predictions of Amazon 'dieback'. Philosophical Transactions of the Royal Society B: Biological Sciences 363: 1857-1864.

IPCC. 2007. Impacts, adaptation and vulnerability. In: Parry, M.L., Canziani, O.F., Palutikof, J.P., Van Der Linden, P.J. and Hanson, C.E. (Eds.), Climate Change 2007. Cambridge University Press, Cambridge, UK.

Mayle, F.E. and Power, M.J. 2008. Impact of a drier Early-Mid-Holocene climate upon Amazonian forests. Philosophical Transactions of the Royal Society B: Biological Sciences 363: 1829-1838.

Royer, D.L. 2008. Linkages between CO2, climate, and evolution in deep time. Proceedings of the National Academy of Sciences USA 105: 407-408.

Solomon, S., Qui, D., Manning, D., Chen, Z., Marquis, M., Averty, K.B., Tignor, M. and Miller, H.L. 2007. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. In: Solomon, S., Qui, D, and Manning, M. (Eds.), Climate Change 2007: The Physical Science Basis. Cambridge University Press, Cambridge, UK.

Svenning, J.C. and Condit, R. 2008. Biodiversity in a warmer world. Science 322: 206-207.

Thomas, C.D., Cameron, A., Green, R.E., Bakkenes, M., Beaumont, L.J., Collingham, Y.C., Barend, F., Erasmus, N., Ferreira de Siqueira, M., Grainger, A., Hannah, L., Hughes, L., Huntley, B., van Jaarsveld, A.S., Midgley, G.F., Miles, L., Ortega-Huerta, M.A., Peterson, A.T., Phillips, O.L. and Williams, S.E. 2004. Extinction risk from climate change. Nature 427: 145-148.

Willis, K.J., Bennett, K.D., Bhagwat, S.A. and Birks, H.J.B. 2010. 4°C and beyond: what did this mean for biodiversity in the past? Systematics and Biodiversity 8: 3-9.

Zachos, J.C., Dickens, G.R. and Zeebe, R.E. 2008. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451: 279-283.